

Public Information Centre – November 10, 2025

Stormwater Management Master Plan – Ailsa Craig

Acknowledgement of Ancestral Lands

We acknowledge that this land on which we are gathered today is part of the ancestral land of the Attawandaron, Anishinabeg, Haudenosaunee, and Lunaapeewak peoples. It is through the connection with the spirit of the land, water and air that we recognize their unique cultures, traditions, and values. Together as treaty people, we have a shared responsibility to act with respect for the environment that sustains all life, protecting the future for those generations to come.

Language Pronunciations:

Attawandaron (Add-a-won-da-run),
Anishinabeg (Ah-nish-in-a-beg)
Haudenosaunee (Hoden-oh-show-nee)
Lunaapeewak (Len-ahpay-wuk)

Public Information Centre

- Share information on the Ailsa Craig Stormwater Management Master Plan process
- Present the findings of the existing conditions review and preliminary analysis
- Gather input from the community to help shape recommended solutions

Presented

Be

What Will

- Study objectives and scope
- Existing infrastructure conditions and challenges
- Hydrologic and hydraulic assessment results
- Preliminary strategies for stormwater management and infrastructure renewal
- Next steps in the Master Plan process

- Review the display materials and ask questions to the project team
- Provide feedback through comment forms and online submissions
- Share local knowledge of flooding, drainage, or infrastructure issues
- Stay engaged through future PICs and project updates

Participate How You Can

Introduction

Why do we need a Stormwater Management Master Plan?

The community of Ailsa Craig faces significant stormwater management challenges due to limited existing infrastructure, ongoing urban intensification, and increasingly severe rainfall events. These factors contribute to localized flooding, erosion, and system capacity issues. As the community continues to grow, the need for effective stormwater solutions becomes increasingly urgent.

Stewart Street, South of Main Street
April 2024

Introduction

Problem & Opportunity Statement

- Address deficiencies in the existing stormwater system and infrastructure gaps
- Provide solutions to reduce flooding risks
- Support future development through sustainable, long-term drainage strategies
- Verify compliance with municipal, provincial, and conservation authority requirements

The SWMMP will Address the Following:

- Evaluate existing stormwater infrastructure performance and identify deficiencies
- Develop strategies to improve capacity, reduce flood risk, and enhance system resilience
- Incorporate updated hydrologic and hydraulic modeling to reflect current and future conditions
- Provide a framework for cost-effective, sustainable infrastructure replacement for the Ailsa Craig community

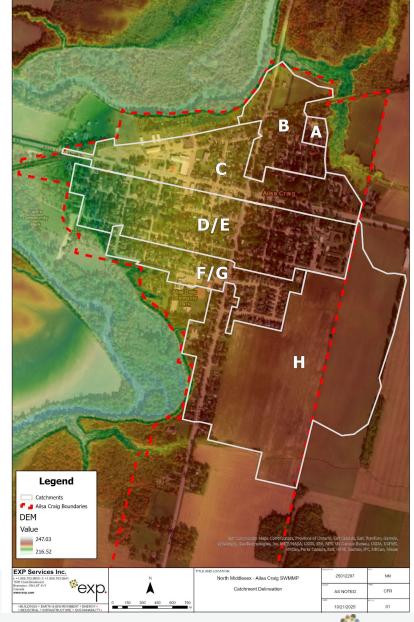
Public Information Centre Objectives

Present Findings of Existing Stormwater Conditions

Present Alternative Solutions to address System Deficiencies

Gather Feedback and Discuss Next Steps in the Master Plan Process

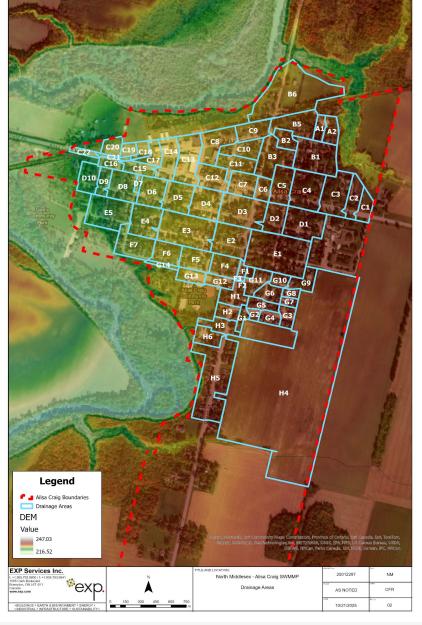
Glossary for the Public:


- Stormwater Management Master Plan (SWMMP): A long-term plan that guides how a community will handle rainwater to reduce flooding, protect property, and improve the environment.
- Rational Method: An engineering method used to estimate how much rainwater becomes runoff during a storm.
- Catchment: An area of land where rainwater drains into the same sewer system or watercourse.
- Drainage Area: A smaller section within a catchment that directs water into a specific pipe or manhole.
- Runoff Coefficient: A number that shows how much rainfall soaks into the ground vs. how much runs off into sewers.
- Time of Concentration (Tc): The time it takes for rainwater from the farthest point in a catchment to reach the sewer system.
- Manning's Equation: A formula engineers use to calculate how much water a pipe can carry, based on its size and slope.

Study Area

The Master Plan study area includes the entire urban boundary of Ailsa Craig, encompassing residential, institutional, and commercial lands supported by a storm sewer network and outlet drains. For the purposes of hydrologic and hydraulic assessment, the drainage system was divided into six major catchments, each representing a dominant portion of the urban area:

- Catchment A: Encompasses Rabbitwood Court and surrounding areas.
- Catchment B: Encompasses Church Street, Ness Street east of Queen Street, as well as portions of Queen Street.
- Catchment C: Encompasses Ailsa Craig Main Street, and portions of surrounding streets such as McAndrew Street, Ness Street, James Street, Queen Street, Jameson Street, Craig Street, Henderson Street, Stewart Street, and Old Mill Street.
- Catchment D/E: Encompasses the majority of William Street, and portions of surrounding streets such as Ness Street, James Street, Queen Street, Jameson Street, Henderson Street, Stewart Street, and Old Mill Street.
- Catchment F/G: Encompasses portions of Annie Ada Shipley Street, and surrounding streets such as Queen Street, Jameson Street, Craig Street, Henderson Street, and Stewart Street.
- Catchment H: Encompasses portions of Queen Street, Hamilton Street, and Atkinson Street.



Drainage Areas

The storm sewer system within Ailsa Craig was divided into a series of individual drainage areas, each representing the contributing flow to a pipe segment or manhole. These areas were aggregated into six major catchments (A through H). The delineation was completed using GIS topographic data, DEM elevation information, and municipal mapping to verify consistency with overland flow paths and sewer connectivity. This framework provides the basis for the hydrologic and hydraulic assessment of existing system capacity.

Channel Flooding Analysis Process

The ultimate receiving watercourse for the community of Ailsa Craig is the Ausauble River. It bounds the town by the northwest, west, and southwest. To the northeast is the Thirwell Award Drain and to the southeast is the Cameron-Thirwell Drain. The flooding within these watercourses is outside of the control of North Middlesex, and therefore flood mitigation strategies for these features has not been considered.

Hydraulic Assessment

The hydraulic assessment of the Ailsa Craig storm sewer network was completed using a standardized design sheet to evaluate the capacity and performance of existing infrastructure. Flow rates, velocities, and hydraulic gradients were calculated using Manning's equation, and results were compared against municipal design standards. The analysis highlighted that several pipe segments are undersized under current conditions. Many segments also demonstrated adequate capacity, but overall, the assessment identified widespread limitations that will require targeted upgrades to support future growth and mitigate flood risk.

Hydraulic Assessment

The hydraulic assessment of the Ailsa Craig storm sewer system was carried out using standardized design methods to evaluate performance. Flow rates, velocities, and pipe capacities were calculated and compared to municipal design standards. The results indicate that while some pipes provide sufficient conveyance, a significant portion of the network is undersized, with capacity ratios above acceptable limits. This highlights system deficiencies that may contribute to localized flooding risks and points to priority areas for future upgrades and coordinated infrastructure renewal.

Catchment	Capacity Ratio	Pipes Over Capacity (%)		
Catchment A	0.28-0.33	0		
Catchment B	1.45-6.99	100		
Catchment C	0.08-3.63	24		
Catchment D/E	0.07-4.07	18		
Catchment F/G	0.03-5.51	19		
Catchment H	0.36-4.33	67		

Adjacent Infrastructure

A review of installation years for storm sewers, sanitary sewers, and watermains across the five catchments shows that most of the underground infrastructure is considered middle-aged (25-50 years). Storm sewers were generally installed between 1950 and 1994, with newer segments concentrated in Catchment A and Catchment F/G.

Sanitary sewers were typically introduced circa 1980, meaning the entire sanitary system is likely in need of repair.

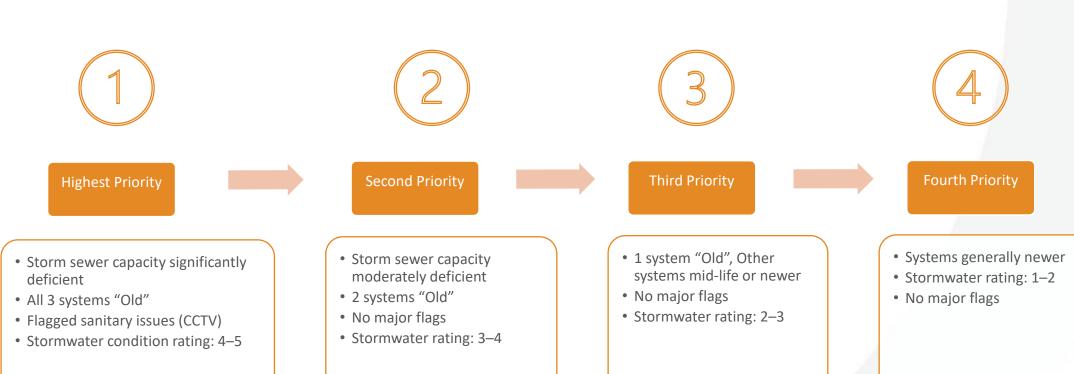
Watermains are also generally considered old, with most dating from the 1960s and the 1970s, with a Main Street Watermain Replacement completed in 2010 and a Queen Street Watermain Rehabilitation completed in 2024.

This overall distribution indicates that much of the network is at or beyond its expected service life, highlighting the importance of coordinated renewal strategies.

Adjacent Infrastructure

Pipes	Catabasant	Installation Year	Aging Condition		
	Catchment		% Old	% Mid	% New
Storm Sewer	Catchment A	1990	0	100	0
	Catchment B	1977	0	100	0
	Catchment C	1977	0	100	0
	Catchment D/E	1950-1977	35	65	0
	Catchment F/G	1977-1994	0	100	0
	Catchment H	1977	0	100	0
Sanitary	Catchment A	1980	0	100	0
	Catchment B	1980	0	100	0
	Catchment C	1980	0	100	0
	Catchment D/E	1980	0	100	0
	Catchment F/G	1980	0	100	0
	Catchment H	1980	0	100	0
Watermain	Catchment A	1974	100	0	0
	Catchment B	1974-2024	40	0	60
	Catchment C	1974-2010	14	0	86
	Catchment D/E	1960-1974	100	0	0
	Catchment F/G	1974-1977	90	10	0
	Catchment H	1974-2010	80	0	20

Prioritization Schedule


A prioritization schedule for replacing stormwater infrastructure focuses on capacity corrections to alleviate flooding but should also consider age and remaining service life of adjacent infrastructure.

Older systems are more vulnerable to failure, leading to higher maintenance costs and service disruptions. By identifying corridors where multiple systems have reached the end of their life, the Municipality can coordinate replacements to reduce emergency repairs and avoid repeated excavation.

This approach supports proactive renewal, bundled project delivery, and long-term system reliability.

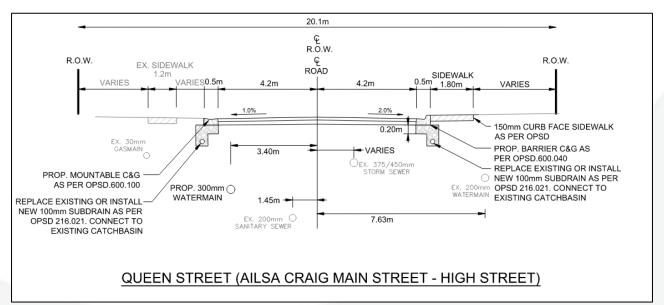
Prioritization Schedule

Street Replacement Priorities

1 (Highest Priority)

2 (Medium Priority)

3 (Lowest Priority)



Conclusion

- >Assessment of existing system performance completed using municipal guidelines.
- > Undersized infrastructure was identified for each catchment.
- Proposed pipe sizing completed following the same approach.
- Adjacent infrastructure age was cross-referenced to determine most might-risk areas.

References

- Municipality of North Middlesex. Infrastructure Design Guidelines and Construction Standards (2025)
- Consolidated Linear Infrastructure Environmental Compliance Approval (CLI ECA, 2022)
- Ontario Ministry of Transportation Highway Drainage Design Standards (HDDS, 2008)
- Ministry of the Environment Stormwater Management Planning and Design Manual (SWMPDM, 2003)

Next Steps

Following the Public Information Centre, we will:

- Review public feedback to better understand the priorities of Ailsa Craig residents and stakeholders.
- Refine the identified stormwater system needs, issues, and opportunities based on input received.
- Finalize recommended solutions for each servicing area within the Ailsa Craig urban boundary.
- Present the Master Plan Report and recommendations to North Middlesex Council.

Next Steps

Council Review
(Ailsa Craig
Council
presentation
date)

December 202

Finalizing the

Master Plan

Implementation
Phases
(To be initiated in 2026, based on Council direction, budget, and priorities)

Next Steps

Please visit the community website (<u>www.northmiddlesex.on.ca</u>) for study updates and more information.

Please forward any comments prior to November 24, 2025, to either of the contacts below. WE WANT
TO HEAR
FROM
YOU!

Faishal Diwan, B. Eng Manager of Infrastructure Municipality of North Middlesex

T 519-294-6244 ext 3218

Email: faishald@northmiddlesex.on.ca

Cameron Rickert Stormwater Engineer EXP Services Inc.

Phone: 519-963-3000

Email: cameron.rickert@exp.com

